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INTRODUCTION

One of the most serious limitations of single scattering code AGAUS, as
developed under previous contracts, was the inability of the internal Mie
routine to provide reliable results for large diameter particles and
situations involving relatively large absorption. These limitations have been
reduced substantially through the replacement of the older forward recursion

Mie routine by one using partial backward recursion and a method of continued

fractions.

The new routine has been made operational on the HP computer system at the

US Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM, and

has been coded to serve as a direct substitute for the earlier routine. This

report has been written to serve primarily as documentation of the new

routine. For the sake of completeness a brief review of the Mie theory has

been included as well as symbolic definitions, flow charts for the new routine !

and a discussion of its reliability.

It should be noted that the new routine has been coded to have the same
name (MIEGX) as the older Mie routine. This was done for ease of replacement
by users who do not wish to revise other portions of AGAUS to reflect a change
of name. The new routine can be easily distinguished from the older one by

its use of complex arithmetic.
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MIE THEORY*

Mie theory predicts the scattering by and the absorption in an
isolated, discrete, homogeneous, isotropic sphere of diameter D with
a known complex refractive index n = m-ik relative to the surrounding
medium and illuminated by monochromatic radiant energy with wavelength
A in the surrounding medium. The theory is given in detaill in standard
texts and need not be repeated here. Instead, those elements of theory
needed for an understanding of the numerical algorithms used are
included.

All scattering properties of spheres are computed from m and k,
and through the use of the induced electric and magnetic multipole

moments of the sphere an and bn’ respectively. The moments are given byf

) W;(nu) Wn(u)-n Wn(na) W;(a)
n ¥'(na) £ (@)n ¥ (n) £'(a) °’
n n n n

(1)

and
n W;(na) Wn(a)-Wn(na) W;(a)

n 0¥ (ma) £ (@)-¥_(na) £ (@)

. (2)

*This section is partially based on material taken from ECOM report
ECOM-5558 by R.B. Gomez, C. Petracca, C. Querfeld and G.B. Hoidale,
March 1975, and the final report on Contract DAADO7-78-C-0063 by Miller
et al., December 1978.

+Note that n is used as a subscript, an integer index and a complex
index of refraction when it is not a subscript.




The prime denotes differentiation with respect to the argument. The

© (z) and gn(z) functions are Ricatti-Bessel functions of the first
n

znd third kind, respectively, and are related to spherical Bessel

functions jn(z) and nn(z) by

Wn(z) =z jn(Z), (3)
and
g (2) = zj (2)-1 zn (2) = ¥ (2) + ix (), (4)
where
%
SNORNCEENAOR (5)
and
.
nn(z) = (EEQ Nn+l/2(z)' (6)

The function Jn+l/2(2) is the half integral order Bessel function; the

function Nn+l/2(z) is the half integral order Neuman function.
The extinction cross section is computed trom

12
Cext - E?
n

I e~18

l(2n+1) Re (an+bn)’ (7)

and the scattering cross section from

_A2S 2
csca - E;n21(2n+l)[|anl * |bn|2]' (8)

The various cross sections are the basic quantities used in scattering

problems, but they are not the quantities usually computed directly from




Mie algorithms. Instead, it is more convenient to compute dimensionless
efficiency factors Qext and Qsca’ which depend on n, k, and a, and which
are multiplied by the geometrical sphere cross section to obtain the true

cross section Ci = neri. Thus,

He~18

_ 2
Qext ~ a2

ext (2n+1) Re(an+bn), (9)

n=1

and

_2% 2 2
Qea = a2n21(2n+1)[|an| + [b_[%1. (10)

Although the cross sections account for the energy removed from the
forwvard beam, they do not give any information about where the scattered
photons go. This information is contained in scattering amplitudes and
intensity factors which relate the flux density scattered through an
angle 6 relative to the incident flux density. ‘Tlhere are two amplitudes,
sl(e) and 82(6), and intensity factors 11(8) and 12(6), which correspond
to light respectively polarized perpendicuiar and parallel to the plane
of scattering defined by the direction of incidence and the direction of
scattering.

The intensity factors are related to the scattering amplitudes by

1,00 = |s (&2, (11)
1,(0) = |sz(e)l2 R (12)
1,(8) = Re(s -S,}, and (13)
1,(8) = —Imangl°S;} . (14)

oo o s,




The amplitudes come from the multipole moments through

I B lam () + b 1 (8], (15)
n=

I

5,(9)

and

_ it 2n+1
5,(8) = nzl Ay PaTn (8) + a T (8)], (16)

and angular factors nn(e) and Tn(e) defined in terms of associated

Legendre functions:

7 _(8) = Pl(cos8)/sind, (17)
n n
dP;(cose)
Tn(e) = T . (18)
The amplitudes have relative phase § = argSl - argSz.

Alternative expressions frequently used are

dPn(cosB)

n (8) = T(cosd)  ° (19)

and
) dvn(e)

nn(e) = cose'ﬂn(e) - sin‘e - T(cosd) ° (20)

where
n
Pn(cose) - d (cos2e-1)", (21)

2 n! dcosne




—

the single scattering albedo 60, which gives the probability that the

photon is scattered:

2‘“’ 1 ) 1
M o
B = Zm J I p(B)d¢dcost = i ![11(8)+12(8)]dcose (26)
ext
0 - .
or
Yo Csca/Cext : (27)

For the special case of & = 180°, backscatter, the efficiency is
expressed by the radar cross section o. The radar cross section may
be defined as 4w times the backscattered power per steradian divided

by the incident power per unit area or

o = bﬂrzl(r,180°)/10. (28)
This can be reduced by the relations

I {11(6) + 12(6)}

I(c,0) = —= ) (29)
and

1,(180°) = 1,(180°) = |51(180°)|2 . (30)
Thus

o = %%|Sl(180°)|2 (31)

and when divided by the geometrical cross section, G = na2,

oy 12
e 4{s, (180 )|
Qadar © C a2 ’ (32)

where a = ka. Using




These functions satisfy the following recurrence relations:

el o (o) - o (o), (22)

nn(e) = cosH (n-1) "n 1

and

T (8) = cosBln (8)-m _,(8)]-(2n-1)sin?6n__ (8)+n _,(8). (23)

The scattering cross section measures the ability of a particle to
scatter light, and it is to be expected that.Csca is obtained from an
integral over the scattering intensity factors. Equation (8) follows from

1

2
Csca = —Z—ﬂ I (il(e) + iz(e)) dcosH. (2[‘)

1
Although the intensity factors themselves may be used in scattering
calculations, they are primarily suited for computing flux densities,
and it is frequently more convenient to measure and compute scattered light
in terms of radiances. Radiances do not have the 1/r? dependence, and it
is therefore unnecessary to know the distance from the scatterer to the
detector if the detector field ot view is small and is filled by the
scattering cloud. The phase function p(8) gives a radiance I scattered
into the 8 direction in terms of the radiance Io incident on the particle.

The phase function is dimensionless and is defined here as

_ A2
p(6) = E;E———[il(e) +1,(0)]. (25)
ext

The normalized phase function p(8)dR/4m gives the probability of a
photon being scattered through an angie 6 into an element of solid

angle d? = d¢dcose. The integral of the normalized phase function is

I AT % B, ORI 4 A IR NN BT v . 3

j
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° ° 1
-n_(180°) = 1 _(180°) = SHE 3 n(ntl), (33)
one obtains
-5,(180°) = §,(180°) = E (n + l)(—1)“(a -b ) (34)
1 2 ns1 2 n n°’

An alternate method of representing the phase functions is with
series:
n~-1

p(8) = ] &,P,(cosh), (35)
=0

where the Legendre expansion coefficients CQ are given by

1
+
&2 = iz%—ll— J PKG)PQ(COSQ)d(COSQ) (36)
-1

and Pl(cose) are the usual Legendre polynomials.

SUBROUTINE MIEGX

Subroutine MIEGX computes various efficiency factors, and intensity

factors i 13, and iA for each complex refractive index m and size

1’ i2’
parameter a (or x). The Ricatti-Bessel functions and their derivatives

in Egs. (1) and (2) are computed by the forward recursion method,

_ 2n-1
Cn(z) == gn-l(z) - En_z(z), (37)
where
En(z) = Wn(z) + an(Z), and z is any complex quantity.

The initial values used in forward recursion are




wo(z) = sin 2z,

sin z
wl(z) = =, - cos z,

"

xo(z) cos z, and

cos z
B e———— + .
Xq 2 sin 2
The angular functions "n and rn are also cormputed by forward recursions
from Eqs. (22) and (23). The initial values used are ﬂo(e) =0, wl(e) =1,
T (8) = 0, and 1,(8) = cosS.
0 1

For computational purposes it is more convenient to write Egqs. (1) and (2)

+
in the following formw
An(niu) n
n + 5| Rele (@)] - Re[g . (a)]
a, = (38)
An(niu) n
o +3 g ~¢ ()

n
. [n;A (o) + 27 Re[g (a)] - Refg _, ()] 39

n n
[nA (na) + 71 E (@) -~ £, (e)
J _(n,a)
- _n v=i"1
where An(nia) =-2+ Jv(“i“) (40)

and v = n + %u The symbol n, is used here for the complex index of

i
refraction to distinguish 1t from subscript n.

Methods utilizing either forward or backward recursion on the ratio
have been applied to the problem and both methods have their own unique

problems., Forward recursion methods are limited by the number of

+"Development of Programs for Computing Characteristics of Ultraviolet
Radiation,” IBM Corp., 1972, Technical Report for Contract No. NASS-21680
(NASA)

13

aaducliid.. e e
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significant digits in the computer. Backward recursion methods must,
of course, calculate AN for some N larger than the n required for
convergence of the Mie sums. Both methods usually require double
precision arithmetic and have been shown to faill for cases involving
large a and/or a large imaginary part of the refractive index.

This subroutine uses the method of continued fractions+ to
calculate the ratio AN independent of any previous value. The ratio

is correct to the accuracy of the machine. The values of An for n<N

are then calculated using the backward recursion formuia

Dk mey

n—Z(Z) 2n-1 J'n(z)

]
i@ T Tz T3 @ “n

If convergence of the Mie summations requires n>N, then AZN is

calculated, again independent of previous An's, and backward

recursion is used to calculate An for N+l<n<2N.

1.This description is based, in part, on technical report ECOM 5509 (1973)
AD767223 by W.J. Lentz. An article covering the same material can be
found in Applied Optics 15, No. 3, 668 (1976).




A continued fraction may be written as

f = a0 + b1
cl + b2
(:2+b3
Cqy vee 42)
or l
b b b ‘
1 2 3
f=a, +— - — (43)
+ + + ...
° 2 €3

th .
The n approximate convergent to the continued fraction representation

of f is written as

(44)

n[nc

=}

Continued fractions may be generated from a three-term recursion relation

*
in a sinmple way:
S B s T 1 |
Jv z Jv z f
2(v+l) w2 |
pd Jv+1
2v 1 1
z T T _ 2w 2) (43)
- - N
So
J 1 1 ®
Jv—l = 2’\72-1 - (46)
v 2(v+)z” - 2(w2)27Y - L,

*
For simplicity the argument =z may be suppressed.

ete iy ke # 30y 2 v

oo

15

ERRC Py




This form is one of a simple continued fraction which may be defined as

1 1 1
) =)+ = v a3+ +

1
1 a, 3 4 e an e

47

where a1 # 0 and the a's may be negative. Equation (47) may be written

in the more convenient notation of

f(x) = [al, ay, ags R R (48)

The nth convergent is written in like manner:

fn(x) = [al’ az) 33, s an] (49)

Lentz has shown that

[al] ees [an
[azj .ee [an_l, ver aZ]Ian, oo s a2]

IRERETE al]lan, e s al]

. (50)

The advantage of this method is that the calculation begins with the first
term (rather than the end) of the fraction and is terminated when it is

determined that

[ak, e s a1]
[ak, cen aZ] -

1| < € . (51)

The value of ¢ depends on the accuracy needed or on the number of
significant digits available on the computer used.

The ratio J\Pl/Jv can be written in a similar form with

n+l

a = (-1) 2(wn+l) -1,

]
1
i




Subroutine MIEGX, as furnished, terminates the calculation of An
with € = 107%. This could be decreased to increase speed at the loss
of some accuracy. 1f the routine was converted to double precision
it would be possible to set € to a much smaller value.

MIEGX then computes the preceding values of'An by backward recursion

and stores them to be used in the Mie summations of

Re[Sl(e)], Im[Sl(e)], Re[SZ(G)] and Im[Sz(e)].

The sum is terminated when

la 12+ [b_ |2 < ¢

and when the fractional change in the radar efficiency is also less than

€, 1.e., when

Qrad n Qrad n-1

Q

<g .,
rad

This is more stringent than the first test alone and is a test on the
phase functions as well.
MIEGX returns the following quantities as required by AGAUSX:

s Q P(J), PFNZRO, O1STAR, and 02STAR. The P(J) and PFNZRO

Qext’ Qsca rad’

as returned by MIEGX are average intensities and must be further normalized

to become the actual phase functions (Eq. 25). O01STAR and 02STAR are the

*

ok -
Legendre expansion coefficients w, and W, .

[ EUR TP S G § o
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VALIDATION OF THE CODE

Comparison runs ot AGAUS using MIEGX with continued fractions and
a previous version of MIEGX based on forward recursion were done in
the region that the forward recursion routine is considered valid (see
final report on Contract DAADO7-78-C-0063, December 1978). The
comparison process was done mainly to verify that coding errors had been
eliminated and that interfacing of the two was accomplished properly.
When one begins to test the limits of a code it is important to
keep in mind the predictions of Mie theory. 1In the limit as a + «, Qext
is expected to converge to 2.0 for constant m and k. There may be
fluctuations or ripples but these will be small for large a. The absorption
efficiency factor, Qabs’ is dependent on the imaginary part of the index
of refraction. Qbs will be small for the small imaginary part and approaches
1 for the totally absorbing sphere. Q is the difference between

sca

Q

ext and Qabs and therefore is bounded above by Qext for small imaginary

part and equal to Q_ . for an all real index of refraction. For complex

indices Qsca will approach a value between Q -Q s and Q

ext ‘ab Ll.e.,

ext’
between 1 and 2 as a becomes large but at no time may Qsca exceed Qext'
The radar efficiency factor is expected to approach a limit between 0 and
1 as a increases. The larger the value of k the smaller the asymptotic

value of Q is expected to be. Some oscillation 1is expected and it

radar
is possible that resonances can produce peak values much larger than the
asymptotic value and minima near zero. Resonances may be more pronounced

for k approximately O, Values of Qradar larger than 10 would probably be

in error.




R - "WW a

Table 1 shows the results of comparison calculations using
MIEGX and DAMIE (a Mie routine written by J. V. Dave). The values of
m, k, and o presented were chosen to show the agreement between the two
codes as well as to point out the extended usefulness of MIEGX. Q
radar
was included in the comparisons because it appears to be very sensitive
to computational errors since it depends on the difference between a ;1

and bn' Q is also an indicator of the validity of the phase functions

radar

being itself p(180°). |

For n = 1.2 -~ 0.01 and a = 10 to 400, there is exact agreement between :i

MIEGX and DAMIE on the value of Qext and Qscd There is some variation

between the two for Q Most interesting, though, is the large

radar’
result for a = 50 obtained with both routines. This might be explained
by resonance as mentioned previously.

The results obtained for n = 1.2 - 0.6i show the failure of the
DAMIE routine for large a. As discussed above Qsca must be less than

Q A value of 7.5 (o = 200) is definite proof of failure. For a = 100

ext’

and larger, Q has deviated dramatically from the value obtained

|
radar i
1

with MIEGX. The presence of a slow downward trend in the MIEGX values X
!

i !

of Q. and @ as well the near constant value of Q . = indicate that |
!

the routine is probably still valid for a of 400. The results for

n=1,2 - 1,21 are presented to again display the extended usefulness of

MIEGX with continued fractions.

Based on these results, as well as other test results not included
in this report, MIEGX is likely to be reliable for a's of at least 400
with an index of refraction as large as 5-5i. For the wide varlety of test

cases using MIEGX there has never been an obvious error in the calculation

of Qexe ©F Qsca'




If the user has an application that requires unusual sizes and/or
index of refraction combinations it is suggested that test runs be
done that encompass the region of interest. Comparing the results to

theory should provide an idea of the accuracy in that region.
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SYMBOL
A(J)
ACAPN
ALPHA,X
ALPHAD

c(n,cl

CAY,CAYD

CAYE

ELTRMX(1,J)

ELTRMX(2,J)

ELTRMX(3,J)

ELTRMX(4,J)

EM,EMD

EN,ENL1
FNA,FNAP , FNAPP
FNB,FNBP, FNBPP
N

NDELTA

NDIM

NMIN

List of Symbols used in MIEGX

Explanation or Definition

An (Eq. 40) the array

An for the current n of the Mie sum
Mie size parameter, a = X = 2nr/A
Double precision ALPHA

The array of cosines of the scattering angles; there are
'IT' elements in the array, the Jth element, rcspectively,

The ratio of the imaginary part to the real part of

adjusted refractive index, double precision CAY, respectively.

The true imaginary part of adjusted refractive index

Within n loop: Re[Sl(B)]; after n loop: = i, =

2

*
Sz(e) 52(9)
Within n loop: = Im[Sl(e)]; after n loop: = il =

*
Sl(e)'sl(e)
Within n loop: = Re[Sz(e)]; after n loop: = 13 =

*

Re[S, ()5, (8)]
Within n loop: = Im[SZ(G)]; after n loop: = (~ia) =

In(s, (6)55(6)]

The real part of adjusted refractive index, double
precision EM, respectively.

Floating point representation of N, N-1, respectively.

= a a2’ respectively.

a a
n’> “n-1°

n’ bn—l’ bn-2’ respectively.
Index in Mie sum

The smaller of NDIM and NMX, later used as increment
of N for calculation of An

The dimension of A array
= X®(mt+k)+9 an approximation to the maximum N needed

= NMX+1-NDELTA

22




SYMBOL

01STAR,01STRD

U2STAR,02STRD

P(J)

PFNZRO

PI(1,J),P1(2,J)
PI(3,J)

PI1J,PI2J,PI3J

QEXT
QRD

QRT

QRTL2

QRTR

QSCAT
QSD

QTD

RRFX

SGR
SGS
SGT

SUMRR

Explanation or Definition

x
= Gl; first order coefficient for Legendre expansion of
the average intensity P(J), double precision 0lSTAR respectively

- .k
Yo

N o . . =

(i1+i2)/2, the average intensity at angles, arc cos(C(J)).

'IT' elements in array

the average intensity at 0°

= nn_z(e), wn_l(e), nn_s(e) (Eq. 22)

The Jth element of PI(1,J), PI(2,J) and PI(3,J),
respectively J

Unnormalized efficiency factors
Double precision backscatter efficiency factor

= SUMRR? + SUMRI? present value of unnormalized
backscatter cross section

Previous value of QRT

= ! QRT - QRTL1|/QRT, ratio of change in QRT to present
value - used as part of exit criterion

The unnormalized scattering cross section
Double precision scattering efficiency factor
Double precision extinction efficiency factor
= EM - iCAYE, complex refractive index

= 1/RF

= 1/ (X*RF)

= 1/X

The backscattering (radar) efficiency factor
The scattering efficiency factor

The extinction efficiency factor

n
l(-1) (2n+1) Re[an-bn]

he~2Z

n
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SYMBOL

SUMRI

T(5)
TA(1),TA(2)
TA(3),TA(4)

TAU(1,J),TAU(2,J),
TAU(3,J)

TAU2J,TAU2J,TAU3J
TB(1),TB{(2)
TC(1),TC(2)

TD(1) ,TD(2)
TE(1),TE(2)

TF(1) ,TF(2)
TG(1),TG(2)

TC1

TC2
TOL

v

WMl
WFN(1)
WFN(2)
X,ALPHA
Y

ZAN,ZANP
ZDEN, ZNUM

Explanation or Definition

N
= ¥ -1 (2n+D) Imfa_-b ]

n=1

Temporary storage variables (real)

Real and imaginary parts of WFN(1), respectively

Real and imaginary parts of WFN(2), respectively

= Tn—Z(e)’ Tn_l(e), rn(e) respectively

The Jth element of
Real and imaginary
Real and imaginary
Real and imaginary
Real and imaginary
Real and imaginary

Real and imaginary

(An/ni) + (n/x)

[}

(An-ni) + (n/x)

NMX + 3/2

=g _(x)

- 2n-1
n x

2nr/A

= X*RF

TAU(1,J), TAU(2,J), and TAU(3,J), resp.
part of FNA, respectively

part of FNB, respectively

parts of FNAP, respectively

part of FNBP, respectively

parts of FNAPP, respectively

parts of FNBPP, respectively

1.E-06 exit tolerance for Mie sum

£, -E ,x)

Temporary complex valued variables in continued
fractions calculation of An

PITTT
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MIEGX - Simplified Flowchart

r ENTER SUBROUTINE J i
T ]

]

| INITIALIZE |

-

Yes

NO (N>1)

1
Calculate
L Tn by
Eq. (22) and (23)
| P
K
Calculate Ratio

of Consecutive Bessel
Functions

e

Sum Over
N R TR

[}
o

Calculate First
Element in N Summation

N=2

— N=N+1

Convergenc

Loop once more to i
Calculate Calculate P(8)

PFNZRO = P(0°)

- c ]
Normalize Q s

RETURN
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RATIO OF CONSECUTIVE BESSEL FUNCTIONS - Simplified Flow Chart

Status upon entry the first time

NDELTA = NMX or NDIM
NMX (reset) = O

Yes

No

NMX = NMX + NDLLTA
NMIN = NMX+1 - NDELTA

Calculate Katio of
Bessel Functions
For N=nDELTA
Exit on TOL = 10-% (Eq. 51)
Abort if V(v) > 20000

I J=NMX l

JJ=J-NMX + NDELTA
AJI) = - % + RATIO

Yes

No

- Ratio

Ratio =

(Rackward Recursion)

2J+1
a

Ratio = Jv_l/Jv

y

J = N - NMX + NDELTA

ACAPN = A(J)

ctcitiihoeer, PRV O S S R

U UUUE U




NOTES ON FLOWCHART RATIO OF CONSECUTIVE BESSEL FUNCTION

What secems to be a confusing use of variables within the

calculation loop; namely NMX, NMIN, NDELTA, JJ and J, is nececssary because

the way the A array is used. The first time through, the ratio Jv—l/Jv
and AN is calculated for the largest value of N that might be needed or
is allowed by array size. The ratic is calculated using the continued
fractions routine and the preceding An's are calculated using backward
recursion. If the Mie sum does not converge before it uses all the
calculated An then it becomes necessary to calculate the next An values.
If so the ratio and AN are recalculated for a new largest N (this time
twice the original N) and the previous N values of An replace the former
ees A

array elements, 1.e., the A array now contains When this

N+1’ 2N°

is done the Mie sum continues. This calculation and replacement of the

A array continues until the Mie sum converges.

—
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